Simplify the odorization process using the most reliable odor/mercaptans monitor. The OMA is a solid state solution for replacing or supplementing human sniffers.
Request a QuoteOdorants are added artificially to natural gas to allow for human leak detection. Local distribution companies (LDCs) employ numerous “sniffers” who judge odorant level in the natural gas product, while generating data from field reports, customer input, and modeling programs.
However, interstate pipelines span hundreds of miles that cross through various territories. Dispatching “sniffers” across vast distances is both time-consuming and costly. While “sniff testing” complies and satisfies the minimum criteria set forth in CFR, Title 49, Part 192.625, an on-line process analyzer would provide the same testing functionality with much richer quantitative data (one example: continuous trend data as opposed to discrete data points).
On-line odorant analysis allows the transmission companies to schedule the minimum required visits to perform sniffing, and optimize their odorant distribution system in real-time. Secondary benefits allow them to optimize their pipeline performance by studying lag times, odorizer performance, fading effects, and other odorant issues.
The OMA measures various odorants including:
The analysis background for odorant measurement is typically a hydrocarbon gas stream. Common applications for the OMA Odorant Analyzer include:
To analyze the chemical composition of the sample, the OMA uses an analysis method known as ultraviolet-visible (UV-Vis) spectroscopy. The system measures absorbance from 200nm to 800nm and quantifies the amount of light absorbed by the sample at each integer wavelength; the OMA plots this raw data to visualize a high-resolution absorbance spectrum. Learn more
The OMA uses a long-life xenon light source to transmit a signal through the sample fluid in the flow cell. The signal is carried by fiber optic cables from the analyzer to the flow cell, where the chemical mixture of the sample has unique interactions with the light based on its current composition. Learn more
To measure the concentration of an odorant (e.g. methyl mercaptan), the OMA detects the distinctive absorbance curve of pure methyl mercaptan and mathematically isolates this structure from the total sample absorbance. In accordance with Beer-Lambert Law, the OMA correlates the height of this curve directly to real-time mercaptan concentration.
Our proprietary ECLIPSE software processes the raw spectral data to provide real-time concentration readings. The operator can easily navigate between views (trendgraph, spectrum, and more) using intuitive touch-screen navigation. You can also configure alarms, data logging, and outputs. Learn more
Most analyzers draw the process sample directly into the analyzer enclosure for analysis, which is dangerous if the sample fluid is toxic, explosive, or corrosive. The OMA design is unique: we bring the light to the sample, not the other way around. The sample circulates through the external flow cell, which receives the signal via fiber optic cables. Learn more
Below we compare the OMA Odorant Analyzer against another prominent method, gas chromatography.
Click any cell or row for more information.
Gas Chromatograph | OMA Odorant Analyzer | |
---|---|---|
Response Time? | SLOW | FAST |
Capital Cost? | HIGH | LOW |
Maintenance/Downtime? | HIGH | LOW |
Specifications found in product literature from mainstream manufacturers. |
All OMA models are equivalent in function and performance with identical electronic configurations. The models vary by form factor and materials of construction, each intended for a unique use case.
The OMA-300 is offered in two explosion-proof formats:
Eexp systems are purged and pressurized using a certified air-purging device. This method ensures that toxic/explosive gas is not allowed to accumulate inside the enclosure and is ideal when instrument air is available.
Eexd systems are contained within certified explosion-proof cast-aluminum enclosures. This method is more practical if the installation is remote or utilities are unreliable.
The OMA is built for direct analysis of the hot/wet sample, thus simplifying the scope of the sample system and retaining high sample integrity. From our vast experience in sampling design, we know that applications can be similar but are rarely identical. For this reason, we design and build sample conditioning systems on a project basis, working from the process to the drawing board.
Note: All performance specifications are subject to the assumption that the sample conditioning system and unit installation are approved by Applied Analytics. For any other arrangement, please inquire directly with Sales.
Measurement Principle | Dispersive ultraviolet-visible (UV-Vis) absorbance spectrophotometry |
Detector | nova II™ UV-Vis diode array spectrophotometer |
Spectral Range | 200-800 nm |
Light Source | Pulsed xenon lamp (average 5 year lifespan) |
Signal Transmission | 600 μm core 1.8 meter fiber optic cables Other lengths available |
Path Length | Application-dependent |
Sample Conditioning | Custom design per application |
Analyzer Calibration | If possible, analyzer is factory calibrated with certified calibration fluids; no re-calibration required after initial calibration; measurement normalized by Auto Zero |
Reading Verification | Simple verification with samples and self-check diagnostic |
Human Machine Interface | Industrial controller with touch-screen LCD display running ECLIPSE™ Software |
Data Storage | Solid State Drive |
OPERATING CONDITIONS | |
Analyzer Environment | Indoor/Outdoor (no shelter required) |
Ambient Temperature | Standard: 0 to 35 °C (32 to 95 °F) Optional: -20 to 55 °C (-4 to 131 °F) To avoid radiational heating, use of a sunshade is recommended for systems installed in direct sunlight. |
Sample Temperature | Standard: -20 to 70 °C (-4 to 158 °F) Optional: up to 150 °C (302 °F) with cooling extensions Contact AAI for temperatures above 150 °C (302°F) |
Sample Pressure | Using standard flow cell: 206 bar (3000 psi) |
UTILITIES | |
Electrical | 85 to 264 VAC 47 to 63 Hz |
Power Consumption | 45 watts |
OUTPUTS | |
Standard Outputs | 1x galvanically isolated 4-20mA analog output per measured analyte(up to 3; additional available by upgrade) 2x digital outputs for fault and SCS control |
Optional Outputs | Modbus TCP/IP; RS-232; RS-485; Fieldbus; Profibus; HART; |
PHYSICAL SPECIFICATIONS | |
Select analyzer type: | OMA-300 Wall-Mounted Analyzer |
OMA-206P Portable Analyzer | |
OMA-406R Rackmount Analyzer |
Methyl Mercaptan Accuracy |
Example ranges below. Custom ranges available. Accuracy may be higher at higher pressure. 0-10 ppm (@10 bar): ±0.1 ppm 0-10 ppm (@1 bar): ±1 ppm 0-100 ppm: ±1% full scale or 1 ppm* 0-10,000 ppm: ±1% full scale 0-100%: ±1% full scale *Whichever larger. |
Standard Design | General Purpose |
Available Options | ATEX, IECEx, EAC, PESO, JPN, KTL |
Please inquire with your sales representative for additional certifications (CSA, FM etc.). |